Physics:Simulation argument (coding Planck units)

From HandWiki

Coding Planck units for deep universe (Programmer God) Simulation Hypothesis models

The deep universe simulation hypothesis or simulation argument is the argument that the universe in its entirety, down to the smallest detail, could be an artificial simulation, such as a computer simulation. A deep universe simulation begins with the big bang and is programmed by an external intelligence (external to the universe), this intelligence by definition a Programmer God in the creator of the universe context.

In Big Bang cosmology, the Planck epoch or Planck era is the earliest stage of the Big Bang, where cosmic time was equal to Planck time. Thus for a deep universe simulation, Planck time can be used as the reference for the simulation clock-rate, with the simulation operating at or below the Planck scale, and with the Planck units as (top-level) candidates for the base (mass, length, time, charge) units.



Geometrical objects

It has been argued that Planck scale geometrical objects (an object orientated programming approach) offers advantages over numerical computations in coding universal mathematical structures. These objects would however have to fulfill the following conditions, for example the object for length must;

condition 1. embed the function of length such that a descriptive (km, mile ... ) is not required

A set of base units for mass [math]\displaystyle{ M }[/math], length [math]\displaystyle{ L }[/math], time [math]\displaystyle{ T }[/math], and ampere [math]\displaystyle{ A }[/math] can be constructed from the geometry of 2 dimensionless physical constants, the fine structure constant α and Omega Ω [1]. Being independent of any numerical system and of any system of units, these MLTA units qualify as "natural units";

...ihre Bedeutung für alle Zeiten und für alle, auch außerirdische und außermenschliche Kulturen notwendig behalten und welche daher als »natürliche Maßeinheiten« bezeichnet werden können... ...These necessarily retain their meaning for all times and for all civilizations, even extraterrestrial and non-human ones, and can therefore be designated as "natural units"... -Max Planck [2][3]
[math]\displaystyle{ M = (1) }[/math]
[math]\displaystyle{ T = (2\pi) }[/math]
[math]\displaystyle{ P = (\Omega) }[/math]
[math]\displaystyle{ V = (2\pi\Omega^2) }[/math]
[math]\displaystyle{ L = (2\pi^2\Omega^2) }[/math]
[math]\displaystyle{ A = (\frac{2^6 \pi^3 \Omega^3}{\alpha}) }[/math]


Mathematical relationship

condition 2. be interrelated such that there is a relationship between them (so that they may combine to form events such as particles).

A mathematical relationship between the objects designated un;

[math]\displaystyle{ (A) \;u^{3}\; }[/math]
[math]\displaystyle{ (L)\;u^{-13}\; }[/math]
[math]\displaystyle{ (M)\;u^{15}\; }[/math]
[math]\displaystyle{ (P)\;u^{16}\; }[/math]
[math]\displaystyle{ (V)\;u^{17}\; }[/math]
[math]\displaystyle{ (T)\;u^{-30}\; }[/math]


Attribute

Each object is assigned a unit;

[math]\displaystyle{ (A)\; }[/math] ampere
[math]\displaystyle{ (L)\; }[/math] length
[math]\displaystyle{ (M)\; }[/math] mass
[math]\displaystyle{ (P)\; }[/math] sqrt of momentum
[math]\displaystyle{ (V)\; }[/math] velocity
[math]\displaystyle{ (T)\; }[/math] time


Scalars

To translate from geometrical objects to a numerical system of units such as the SI units requires scalars (kltpva) that can be assigned numerical values.

Geometrical units
Attribute Geometrical object Scalar
mass [math]\displaystyle{ M = 1 }[/math] [math]\displaystyle{ k,\; unit = u^{15} }[/math]
time [math]\displaystyle{ T = 2\pi }[/math] [math]\displaystyle{ t,\; unit = u^{-30} }[/math]
momentum (sqrt of) [math]\displaystyle{ P = \Omega }[/math] [math]\displaystyle{ p,\; unit = u^{16} }[/math]
velocity [math]\displaystyle{ V = 2\pi\Omega^2 }[/math] [math]\displaystyle{ v,\; unit = u^{17} }[/math]
length [math]\displaystyle{ L = 2\pi^2\Omega^2 }[/math] [math]\displaystyle{ l,\; unit = u^{-13} }[/math]
ampere [math]\displaystyle{ A = \frac{2^6 \pi^3 \Omega^3}{\alpha} }[/math] [math]\displaystyle{ a,\; unit = u^3 }[/math]


Scalar relationships

condition 3. MLTA can combine in such a ratio that they cancel whereby the sum universe itself (being a mathematical structure) is unit-less. While internally the universe has measurable units, externally (seen from outside the simulation) the universe has no physical structure.

The following un groups cancel, as such only 2 (associated) scalars are actually required, for example, if we know a and l then we know k and t (as in the following examples).

[math]\displaystyle{ \frac{u^{3*3} u^{-13*3}}{u^{-30}}\;(\frac{a^3 l^3}{t}) = \frac{u^{-13*15}}{u^{15*9} u^{-30*11}} \;(\frac{l^{15}}{k^9 t^{11}}) = \;...\; =1 }[/math]


SI Planck unit scalars

[math]\displaystyle{ M = m_P = (1)k;\; k = m_P = .21767281758... \;10^{-7},\; u^{15}\; (kg) }[/math]
[math]\displaystyle{ T = t_p = {2\pi}t;\; t = \frac{t_p}{2\pi} = .17158551284... 10^{-43},\; u^{-30}\; (s) }[/math]
[math]\displaystyle{ L = l_p = {2\pi^2\Omega^2}l;\; l = \frac{l_p}{2\pi^2\Omega^2} = .20322086948... 10^{-36},\; u^{-13}\; (m) }[/math]
[math]\displaystyle{ V = c = {2\pi\Omega^2}v;\; v = \frac{c}{2\pi\Omega^2} = 11843707.9... ,\; u^{17}\; (m/s) }[/math]
[math]\displaystyle{ A = A = (\frac{2^6 \pi^3 \Omega^3}{\alpha})a;\; a = \frac{A \alpha}{64\pi^3\Omega^3} = .12691858859... 10^{23},\; u^{3}\; (A) }[/math]


Example MLT;

[math]\displaystyle{ \frac{L^{15}}{M^9 T^{11}} = \frac{l_p^{15}}{m_P^9 t_p^{11}} = \frac{(2 \pi^2 \Omega^2 l)^{15}}{(1 k)^9 (2\pi t)^ {11}} = 2^4 \pi^{19} \Omega^{30} }[/math]
[math]\displaystyle{ \frac{l^{15}}{k^9 t^{11}} = \frac{(.203...x10^{-36})^{15}}{(.217...x10^{-7})^9 (.171...x10^{-43})^{11}} \frac{u^{- 13*15}}{u^{15*9} u^{-30*11}} = 1 }[/math]


Example ALT;

[math]\displaystyle{ \frac{A^3 L^3}{T} = \frac{A_p^3 l_p^3}{t_p} = \frac{(2^6 \pi^3 \Omega^3 a)^3 (2 \pi^2 \Omega^2 l)^3}{(\alpha)^3 (2\pi t)} = \frac{2^{20} \pi^{14} \Omega^{15}}{\alpha^3} }[/math]
[math]\displaystyle{ \frac{a^3 l^3}{t} = \frac{(.126...x10^{23})^3 (.203...x10^{-36})^3}{ (.171...x10^{-43})} \frac{u^{3*3} u^{-13*3}} {u^{-30}} = 1 }[/math]


Note: the geometry Ω15 is common to unit-less ratios.


MT to LPVA

In this example units LPVA are derived from MT. The formulas for MT;

[math]\displaystyle{ M = (1)k,\; unit = u^{15} }[/math]
[math]\displaystyle{ T = (2\pi) t,\; unit = u^{-30} }[/math]

Replacing scalars pvla with kt

[math]\displaystyle{ P = (\Omega)\;\frac{k^{12/15}}{t^{2/15}},\; unit = u^{12/15*15-2/15*(-30)=16} }[/math]
[math]\displaystyle{ V = \frac{2 \pi P^2}{M} = (2 \pi \Omega^2)\; \frac{k^{9/15}}{t^{4/15}},\; unit = u^{9/15*15-4/15*(-30)=17} }[/math]
[math]\displaystyle{ L = \frac{T V}{2} = (2 \pi^2 \Omega^2) \; k^{9/15} t^{11/15},\; unit = u^{9/15*15+11/15*(-30)=-13} }[/math]
[math]\displaystyle{ A = \frac{8 V^3}{\alpha P^3} = \left(\frac{64 \pi^3 \Omega^3}{\alpha}\right)\; \frac{1}{k^{3/5} t^{2/5}},\; unit = u^{9/15*(-15)+6/15*30=3} }[/math]


PV to MTLA

In this example units MLTA are derived from PV. The formulas for PV;

[math]\displaystyle{ P = (\Omega)p,\; unit = u^{16} }[/math]
[math]\displaystyle{ V = (2\pi\Omega^2)v,\; unit = u^{17} }[/math]

Replacing scalars klta with pv

[math]\displaystyle{ M = \frac{2\pi P^2}{V} = (1)\frac{p^2}{v},\; unit = u^{16*2-17=15} }[/math]
[math]\displaystyle{ T^2 = (2\pi \Omega)^{15} \frac{P^9}{2\pi V^{12}} }[/math]
[math]\displaystyle{ T = (2\pi) \frac{p^{9/2}}{v^6},\; unit = u^{16*9/2-17*6=-30} }[/math]
[math]\displaystyle{ L = \frac{T V}{2} = (2\pi^2\Omega^2)\frac{p^{9/2}}{v^5},\; unit = u^{16*9/2-17*5=-13} }[/math]
[math]\displaystyle{ A = \frac{8 V^3}{\alpha P^3} = (\frac{2^6 \pi^3 \Omega^3}{\alpha})\frac{v^3}{p^3},\; unit = u^{17*3-16*3=3} }[/math]


Physical constants

In this example, to maintain integer exponents, scalar p is defined in terms of a scalar r.

[math]\displaystyle{ r = \sqrt{p} = \sqrt{\Omega},\; unit \;u^{16/2=8} }[/math]

As α and Ω have fixed values, 2 scalars are also needed to solve the physical constants with numerical values. The SI Planck units are known with a low precision, conversely 2 of the CODATA 2014 physical constants have been assigned exact numerical values; c and permeability of vacuum μ0. Thus scalars r and v were chosen as they can be derived directly from V = c and μ0.

[math]\displaystyle{ v = \frac{c}{2 \pi \Omega^2}= 11843707.9 ...,\; units = m/s }[/math]
[math]\displaystyle{ r^7 = \frac{2^{11} \pi^5 \Omega^4 \mu_0}{\alpha};\; r = .712562514 ...,\; units = (\frac{kg.m}{s})^{1/4} }[/math]
Physical constants; geometrical vs experimental (CODATA)
Constant In Planck units Geometrical object SI calculated (r, v, Ω, α*) SI CODATA 2014 [4]
Speed of light V [math]\displaystyle{ c^* = (2\pi\Omega^2)v,\;u^{17} }[/math] c* = 299 792 458, unit = u17 c = 299 792 458 (exact)
Fine structure constant α* = 137.035 999 139 (mean) α = 137.035 999 139(31)
Rydberg constant [math]\displaystyle{ R^* = (\frac{m_e}{4 \pi L \alpha^2 M}) }[/math] [math]\displaystyle{ R^* = \frac{1}{2^{23} 3^3 \pi^{11} \alpha^5 \Omega^{17}}\frac{v^5}{r^9},\;u^{13} }[/math] R* = 10 973 731.568 508, unit = u13 R = 10 973 731.568 508(65)
Vacuum permeability [math]\displaystyle{ \mu_0^* = \frac{\pi V^2 M}{\alpha L A^2} }[/math] [math]\displaystyle{ \mu_0^* = \frac{\alpha}{2^{11} \pi^5 \Omega^4} r^7,\; u^{17*2+15+13-6=7*8=56} }[/math] μ0* = 4π/10^7, unit = u56 μ0 = 4π/10^7 (exact)
Planck constant [math]\displaystyle{ h^* = 2 \pi M V L }[/math] [math]\displaystyle{ h^* = 2^3 \pi^4 \Omega^4 \frac{r^{13}}{v^5},\; u^{15+17-13 = 8*13-17*5 = 19} }[/math] h* = 6.626 069 134 e-34, unit = u19 h = 6.626 070 040(81) e-34
Gravitational constant [math]\displaystyle{ G^* = \frac{V^2 L}{M} }[/math] [math]\displaystyle{ G^* = 2^3 \pi^4 \Omega^6 \frac{r^5}{v^2},\; u^{34-13-15 = 8*5-17*2 = 6} }[/math] G* = 6.672 497 192 29 e11, unit = u6 G = 6.674 08(31) e-11
Elementary charge [math]\displaystyle{ e^* = A T }[/math] [math]\displaystyle{ e^* = \frac{2^7 \pi^4 \Omega^3}{\alpha}\frac{r^3}{v^3},\; u^{3-30=3*8-17*3=-27} }[/math] e* = 1.602 176 511 30 e-19, unit = u-19 e = 1.602 176 620 8(98) e-19
Boltzmann constant [math]\displaystyle{ k_B^* = \frac{\pi V M}{A} }[/math] [math]\displaystyle{ k_B^* = \frac{\alpha}{2^5 \pi \Omega} \frac{r^{10}}{v^3},\; u^{17+15-3=10*8-17*3=29} }[/math] kB* = 1.379 510 147 52 e-23, unit = u29 kB = 1.380 648 52(79) e-23
Electron mass [math]\displaystyle{ m_e^* = \frac{M}{f_e},\; u^{15} }[/math] me* = 9.109 382 312 56 e-31, unit = u15 me = 9.109 383 56(11) e-31
Classical electron radius [math]\displaystyle{ \lambda_e^* = 2\pi L f_e,\; u^{-13} }[/math] λe* = 2.426 310 2366 e-12, unit = u-13 λe = 2.426 310 236 7(11) e-12
Planck temperature [math]\displaystyle{ T_p^* = \frac{A V}{\pi} }[/math] [math]\displaystyle{ T_p^* = \frac{2^7 \pi^3 \Omega^5}{\alpha} \frac{v^4}{r^6} ,\; u^{3+17=17*4-6*8=20} }[/math] Tp* = 1.418 145 219 e32, unit = u20 Tp = 1.416 784(16) e32
Planck mass M [math]\displaystyle{ m_P^* = (1)\frac{r^4}{v} ,\; u^{15} }[/math] mP* = .217 672 817 580 e-7, unit = u15 mP = .217 647 0(51) e-7
Planck length L [math]\displaystyle{ l_p^* = (2\pi^2\Omega^2)\frac{r^9}{v^5},\;u^{-13} }[/math] lp* = .161 603 660 096 e-34, unit = u-13 lp = .161 622 9(38) e-34
Planck time T [math]\displaystyle{ t_p^* = (2\pi)\frac{r^9}{v^6} ,\; u^{-30} }[/math] tp* = 5.390 517 866 e-44, unit = u-30 tp = 5.391 247(60) e-44
Ampere A [math]\displaystyle{ A^* = \frac{2^6\pi^3\Omega^3}{\alpha}\frac{v^3}{r^6} ,\; u^3 }[/math] A^* = 0.148 610 6299 e25, unit = u3
Von Klitzing constant [math]\displaystyle{ R_K^* = (\frac{h}{e^2})^* }[/math] RK* = 25812.807 455 59, unit = u73 RK = 25812.807 455 5(59)
Gyromagnetic ratio [math]\displaystyle{ \gamma_e/2\pi = \frac{g l_p^* m_P^*}{2 k_B^* m_e^*},\; unit = u^{-13-29 = 3-30-15 = -42} }[/math] γe/2π* = 28024.953 55, unit = u-42 γe/2π = 28024.951 64(17)

Note that r, v, Ω, α are dimensionless numbers, when we replace un with the SI unit equivalents (u15 → kg, u-13 → m, u-30 → s, ...), the geometrical objects (i.e.: c* = 2πΩ2v = 299792458, units = u17) become indistinguishable from their respective physical constants (i.e.: c = 299792458, units = m/s). If this mathematical relationship can therefore be identified within the SI units themselves, then we have a strong argument for a mathematical universe.


Electron formula

Main page: v:Electron (mathematical)

Although the Planck units MLTA are embedded within the electron formula fe, this formula is both unit-less and non scalable (units = scalars = 1). It is therefore a dimensionless physical constant,

[math]\displaystyle{ f_e = 4\pi^2(2^6 3 \pi^2 \alpha \Omega^5)^3 = .23895453...x10^{23} }[/math]

AL as an ampere-meter (ampere-length) are the units for a magnetic monopole.

[math]\displaystyle{ T = 2\pi \frac{r^9}{v^6},\; u^{-30} }[/math]
[math]\displaystyle{ \sigma_{e} = \frac{3 \alpha^2 A L}{\pi^2} = {2^7 3 \pi^3 \alpha \Omega^5}\frac{r^3}{v^2},\; u^{-10} }[/math]
[math]\displaystyle{ f_e = \frac{ \sigma_{e}^3}{T} = \frac{(2^7 3 \pi^3 \alpha \Omega^5)^3}{2\pi},\; units = \frac{(u^{-10})^3}{u^{-30}} = 1, scalars = (\frac{r^3}{v^2})^3 \frac{v^6}{r^9} = 1 }[/math]


The electron has dimension-ed parameters, the dimensions deriving from the Planck units, fe is a mathematical function that dictates how these Planck objects are applied, it does not have dimension units of its own, consequently there is no physical electron, only these electron parameters.

electron mass [math]\displaystyle{ m_e = \frac{M}{f_e} }[/math] (M = Planck mass)

electron wavelength [math]\displaystyle{ \lambda_e = 2\pi L f_e }[/math] (L = Planck length)

elementary charge [math]\displaystyle{ e = A.T }[/math]


Fine structure constant

The Sommerfeld fine structure constant alpha is a dimensionless physical constant, alpha = 137.03599...

[math]\displaystyle{ \alpha = \frac{2 h}{\mu_0 e^2 c} }[/math]
[math]\displaystyle{ \alpha = 2({8 \pi^4 \Omega^4})/(\frac{\alpha}{2^{11} \pi^5 \Omega^4})(\frac{128 \pi^4 \Omega^3}{\alpha})^2(2 \pi \Omega^2) = \alpha }[/math]
[math]\displaystyle{ scalars = \frac{r^{13}}{v^5}.\frac{1}{r^7}.\frac{v^6}{r^6}.\frac{1}{v} = 1 }[/math]
[math]\displaystyle{ units = \frac{u^{19}}{u^{56} (u^{-27})^2 u^{17}} = 1 }[/math]


Omega

The most precise of the experimentally measured constants is the Rydberg R = 10973731.568508(65) 1/m. Here c, μ0, R are combined into a unit-less ratio;

[math]\displaystyle{ \frac{(c^*)^{35}}{(\mu_0^*)^9 (R^*)^7} = (2 \pi \Omega^2)^{35}/(\frac{\alpha}{2^{11} \pi^5 \Omega^4})^9 .(\frac{1} {2^{23} 3^3 \pi^{11} \alpha^5 \Omega^{17}})^7 }[/math]
[math]\displaystyle{ units = \frac{(u^{17})^{35}}{(u^{56})^9 (u^{13})^7} = 1 }[/math]

We can now define Ω using the geometries for (c*, μ0*, R*) and then solve by replacing (c*, μ0*, R*) with the numerical (c, μ0, R) CODATA 2014 values.

[math]\displaystyle{ \Omega^{225}=\frac{(c^*)^{35}}{2^{295} 3^{21} \pi^{157} (\mu_0^*)^9 (R^*)^7 \alpha^{26}}, \;units = 1 }[/math]
[math]\displaystyle{ \Omega = 2.007\;134\;9496...,\; units = 1 }[/math]

There is a close natural number for Ω that is a square root implying that Ω can have a plus or a minus solution;

[math]\displaystyle{ \Omega = \sqrt{ \left(\frac{\pi^e}{e^{(e-1)}}\right)} = 2.007\;134\;9543... }[/math]


G, h, e, me, kB

As geometrical objects, the physical constants (G, h, e, me, kB) can be defined using the geometrical formulas for (c*, μ0*, R*) and solved using the CODATA 2014 numerical values for (c, μ0, R, α), i.e.:.

[math]\displaystyle{ {(h^*)}^3 = (2^3 \pi^4 \Omega^4 \frac{r^{13} u^{19}}{v^5})^3 = \frac{2\pi^{10} {(\mu_0^*)}^3} {3^6 {(c^*)}^5 \alpha^{13} {(R^*)}^2},\; unit = u^{57} }[/math]


Physical constants; calculated vs experimental (CODATA)
Constant Geometry Calculated from (R, c, μ0, α) CODATA 2014 [5]
Planck constant [math]\displaystyle{ {(h^*)}^3 = \frac{2\pi^{10} {\mu_0}^3} {3^6 {c}^5 \alpha^{13} {R_\infty}^2},\; unit = u^{57} }[/math] h* = 6.626 069 134 e-34, unit = u19 h = 6.626 070 040(81) e-34
Gravitational constant [math]\displaystyle{ {(G^*)}^5 = \frac{\pi^3 {\mu_0}}{2^{20} 3^6 \alpha^{11} {R_\infty}^2},\; unit = u^{30} }[/math] G* = 6.672 497 192 29 e11, unit = u6 G = 6.674 08(31) e-11
Elementary charge [math]\displaystyle{ {(e^*)}^3 = \frac{4 \pi^5}{3^3 {c}^4 \alpha^8 {R_\infty}},\; unit = u^{-81} }[/math] e* = 1.602 176 511 30 e-19, unit = u-19 e = 1.602 176 620 8(98) e-19
Boltzmann constant [math]\displaystyle{ {(k_B^*)}^3 = \frac{\pi^5 {\mu_0}^3}{3^3 2 {c}^4 \alpha^5 {R_\infty}} ,\; unit = u^{87} }[/math] kB* = 1.379 510 147 52 e-23, unit = u29 kB = 1.380 648 52(79) e-23
Electron mass [math]\displaystyle{ {(m_e^*)}^3 = \frac{16 \pi^{10} {R_\infty} {\mu_0}^3}{3^6 {c}^8 \alpha^7},\; unit = u^{45} }[/math] me* = 9.109 382 312 56 e-31, unit = u15 me = 9.109 383 56(11) e-31
Planck mass [math]\displaystyle{ (m_P^*)^{15} = \frac{2^{25}\pi^{13} \mu_0^6}{ 3^6 c^5 \alpha^{16} R_\infty^2},\; unit = (u^{15})^{15} }[/math] mP* = .217 672 817 580 e-7, unit = u15 mP = .217 647 0(51) e-7
Planck length [math]\displaystyle{ (l_p^*)^{15} = \frac{\pi^{22} \mu_0^9}{2^{35} 3^{24} \alpha^{49} c^{35} R_\infty^8},\; unit = (u^{-13})^{15} }[/math] lp* = .161 603 660 096 e-34, unit = u-13 lp = .161 622 9(38) e-34
Gyromagnetic ratio [math]\displaystyle{ (\gamma_e/2\pi)^3 = \frac{g^3 3^3 c^4}{2^8 \pi^8 \alpha \mu_0^3 R_\infty^2},\; unit = u^{-126} }[/math] γe/2π* = 28024.953 55, unit = u-42 γe/2π = 28024.951 64(17)


2019 SI unit revision

Following the 26th General Conference on Weights and Measures (2019 redefinition of SI base units) are fixed the numerical values of the 4 physical constants (h, c, e, kB). In the context of this model however only 2 base units may be assigned by committee as the rest are then numerically fixed by default and so the revision may lead to unintended consequences where experimentally measured values could differ according to which measurement instruments are being used;

Physical constants
Constant CODATA 2018 [6]
Speed of light c = 299 792 458 (exact)
Planck constant h = 6.626 070 15 e-34 (exact)
Elementary charge e = 1.602 176 634 e-19 (exact)
Boltzmann constant kB = 1.380 649 e-23 (exact)
Fine structure constant α = 137.035 999 084(21)
Rydberg constant R = 10973 731.568 160(21)
Electron mass me = 9.109 383 7015(28) e-31
Vacuum permeability μ0 = 1.256 637 062 12(19) e-6

For example;

[math]\displaystyle{ R^* = \frac{4 \pi^5}{3^3 c^4 \alpha^8 e^3} = 10973\;729.082\;465 }[/math]

[math]\displaystyle{ {(m_e^*)}^3 = \frac{2^4 \pi^{10} R \mu_0^3}{3^6 c^8 \alpha^7},\;m_e^* = 9.109\;382\;3259 \;10^{-31} }[/math]

[math]\displaystyle{ {(\mu_0^*)}^3 = \frac{3^6 h^3 c^5 \alpha^{13} R^2}{2 \pi^{10}},\;\mu_0^* = 1.256\;637\;251\;88\;10^{-6} }[/math]

[math]\displaystyle{ {(h^*)}^3 = \frac{2 \pi^{10} \mu_0^3}{3^6 c^5 \alpha^{13} R^2},\;h^* = 6.626\;069\;149\;10^{-34} }[/math]

[math]\displaystyle{ {(e^*)}^3 = \frac{4 \pi^5}{3^3 c^4 \alpha^8 R},\; e^* = 1.602\;176\;513\;10^{-19} }[/math]


u as √{length/mass.time}

u = √{L/M.T}

[math]\displaystyle{ u,\; units = \sqrt{\frac{L}{M T}} = \sqrt{u^{-13-15+30=2}} = u^1 }[/math]
[math]\displaystyle{ x,\;units = \sqrt{\frac{M^9 T^{11}}{L^{15}}} = u^0 = 1 }[/math]
[math]\displaystyle{ y,\;units = M^2T = u^0 = 1 }[/math]

Gives;

[math]\displaystyle{ u^3 = \frac{L^{3/2}}{M^{3/2} T^{3/2}} = A,\; (ampere) }[/math]
[math]\displaystyle{ u^6 (y) = L^3/T^2 M,\; (G) }[/math]
[math]\displaystyle{ u^{13} (xy) = 1/L,\; (1/l_p) }[/math]
[math]\displaystyle{ u^{15} (xy^2) = M,\; (m_P) }[/math]
[math]\displaystyle{ u^{17} (xy^2) = V,\; (c) }[/math]
[math]\displaystyle{ u^{19} (xy^3) = ML^2/T,\; (h) }[/math]
[math]\displaystyle{ u^{20} (xy^2) = \frac{L^{5/2}}{M^{3/2} T^{5/2}} = AV,\;(T_P) }[/math]
[math]\displaystyle{ u^{27} (x^2y^3) = \frac{M^{3/2}\sqrt{T}}{L^{3/2}} = 1/AT,\; (1/e) }[/math]
[math]\displaystyle{ u^{29} (x^2y^4) = \frac{M^{5/2}\sqrt{T}}{\sqrt{L}} = ML/AT,\; (k_B) }[/math]
[math]\displaystyle{ u^{30} (x^2 y^3) = 1/T,\; (1/t_p) }[/math]
[math]\displaystyle{ u^{56} (x^4 y^7) = \frac{M^4 T}{L^2} =\frac{M L}{T^2 A^2} ,\;(\mu_0) }[/math]

β (unit = u)

i (from x) and j (from y).

[math]\displaystyle{ R = \sqrt{P} = \sqrt{\Omega} r,\; units = u^8 }[/math]
[math]\displaystyle{ \beta = \frac{V}{R^2} = \frac{2\pi R^2}{M} = \frac{A^{1/3} \alpha^{1/3}}{2} \;..., \; unit = u }[/math]
[math]\displaystyle{ i = \frac{1}{2\pi {(2\pi \Omega)}^{15}},\; unit = 1 }[/math]
[math]\displaystyle{ j = \frac{r^{17}}{v^8} = k^2t = \frac{k^8}{r^{15}} ...,\; unit = \frac{u^{17*8}}{u^{8*17}} = u^{15*2}u^{-30} ... = 1 }[/math]

For example; the constants solved in terms of (r, v)

[math]\displaystyle{ \beta = \frac{V}{R^2} = \frac{2\pi \Omega^2 v}{\Omega r^2},\; u }[/math]
[math]\displaystyle{ A = \beta^3 (\frac{2^3}{\alpha}) = \frac{2^6 \pi^3 \Omega^3}{\alpha}\frac{v^3}{r^6},\; u^3 }[/math]
[math]\displaystyle{ G = \frac{\beta^6}{2^3 \pi^2} (j) = 2^3 \pi^4 \Omega^6 \frac{r^5}{v^2},\; u^6 }[/math]
[math]\displaystyle{ L^{-1} = 4\pi \beta^{13} (ij) = \frac{1}{2\pi^2 \Omega^2} \frac{v^5}{r^9},\; u^{13} }[/math]
[math]\displaystyle{ M = 2\pi \beta^{15} (ij^2) = \frac{r^4}{v},\; u^{15} }[/math]
[math]\displaystyle{ P = \beta^{16} (ij^2) = \Omega r^2,\; u^{16} }[/math]
[math]\displaystyle{ V = \beta^{17} (ij^2) = 2\pi \Omega^2 v,\; u^{17} }[/math]
[math]\displaystyle{ h = \pi \beta^{19} (ij^3) = 8\pi^4 \Omega^4 \frac{r^{13}}{v^5},\; u^{19} }[/math]
[math]\displaystyle{ T_P^* =\frac{2^3 \beta^{20}}{\pi \alpha} (ij^2) = \frac{2^7 \pi^3 \Omega^5}{\alpha} \frac{v^4}{r^6} ,\; u^{20} }[/math]
[math]\displaystyle{ e^{-1} = \frac{\alpha \pi \beta^{27} (i^2j^3)}{4} = \frac{\alpha}{128\pi^4 \Omega^3} \frac{v^3}{r^{3}},\; u^{27} }[/math]
[math]\displaystyle{ k_B = \frac{\alpha \pi^2 \beta^{29}(i^2j^4)}{4} = \frac{\alpha}{32 \pi \Omega} \frac{r^{10}}{v^3},\; u^{29} }[/math]
[math]\displaystyle{ T^{-1} = 2\pi \beta^{30} (i^2 j^3) = \frac{1}{2\pi}\frac{v^6}{r^9},\; u^{30} }[/math]
[math]\displaystyle{ \mu_0^* = \frac{\pi^3 \alpha \beta^{56}}{2^3} (i^4 j^7) = \frac{\alpha}{2^{11} \pi^5 \Omega^4} r^7,\; u^{56} }[/math]
[math]\displaystyle{ \epsilon_0^{*-1} = \frac{\pi^3 \alpha \beta^{90}}{2^3} (i^6 j^{11}) = \frac{\alpha}{2^9 \pi^3} v^2 r^7,\; u^{90} }[/math]

limit j

The numerical SI values for j suggest a limit (boundary) to the values the SI constants can have.

[math]\displaystyle{ j = \frac{r^{17}}{v^8} = k^2 t = \frac{k^{17/4}}{v^{15/4}} = ... = .812997... x10^{-59},\; units =1 }[/math]

In SI terms unit β has this value;

[math]\displaystyle{ a^{1/3} = \frac{v}{r^2} = \frac{1}{t^{2/15}k^{1/5}} = \frac{\sqrt{v}}{\sqrt{k}} ... = 23326079.1...; unit = u }[/math]

The unit-less ratios;

[math]\displaystyle{ (AL)^3/T = A^3T^{-1}/(L^{-1})^3;\; units = \frac{u^3 (u^{30}x^2 y^3)}{(u^{13} x y)^3} = 1/x }[/math]
[math]\displaystyle{ T^2 T_P^3 = \frac{T_P^3}{(T^{-1})^2} ;\; units = \frac{(u^{20} x y^2)^3}{(u^{30} x^2 y^3)^2} = 1/x }[/math]
[math]\displaystyle{ {M^9 (L^{-1})^{15}}/{(T^{-1})^{11}} ;\; units = \frac{(u^{15} x y^2)^9 (u^{13} x y)^{15}}{(u^{30} x^2 y^3)^{11}} = x^2 }[/math]


Rydberg formula

The Rydberg formula can now be re-written in terms of amperes [math]\displaystyle{ A^2 }[/math]

[math]\displaystyle{ \frac{hc}{2\pi \alpha^2} = \frac{j^2 A^2}{2^8 2\pi t_p} }[/math]


Mathematical Universe

The mathematical universe refers to universe models whose underlying premise is that the physical universe has a mathematical origin, the physical (particle) universe is a construct of the mathematical universe, and as such physical reality is a perceived reality. It can be considered a form of Pythagoreanism or Platonism in that it proposes the existence of mathematical objects; and a form of mathematical monism in that it denies that anything exists except these mathematical objects.

Simulation theory (The Simulation Universe Hypothesis where the universe is a simulated reality, the analogy being a computer game), is a limited mathematical universe model in which the mathematical objects exist only within the framework of (computer) "source code", the Simulated Universe as manipulated data and the question of what lies outside the simulation has no meaning.

Physicist Max Tegmark in his book "Our Mathematical Universe: My Quest for the Ultimate Nature of Reality"[7][8] proposed that Our external physical reality is a mathematical structure.[9] That is, the physical universe is not merely described by mathematics, but is mathematics (specifically, a mathematical structure). Mathematical existence equals physical existence, and all structures that exist mathematically exist physically as well. Any "self-aware substructures will subjectively perceive themselves as existing in a physically 'real' world".[10]

Many works of science fiction as well as some forecasts by serious technologists and futurologists predict that enormous amounts of computing power will be available in the future. Let us suppose for a moment that these predictions are correct. One thing that later generations might do with their super-powerful computers is run detailed simulations of their forebears or of people like their forebears. Because their computers would be so powerful, they could run a great many such simulations. Suppose that these simulated people are conscious (as they would be if the simulations were sufficiently fine-grained and if a certain quite widely accepted position in the philosophy of mind is correct). Then it could be the case that the vast majority of minds like ours do not belong to the original race but rather to people simulated by the advanced descendants of an original race. It is then possible to argue that, if this were the case, we would be rational to think that we are likely among the simulated minds rather than among the original biological ones. |Nick Bostrom, Are you living in a computer simulation?, 2003[11]


External links


References

  1. Macleod, M.J. "Programming Planck units from a mathematical electron; a Simulation Hypothesis". Eur. Phys. J. Plus 113: 278. 22 March 2018. doi:10.1140/epjp/i2018-12094-x. 
  2. Planck (1899), p. 479.
  3. *Tomilin, K. A., 1999, "Natural Systems of Units: To the Centenary Anniversary of the Planck System", 287–296.
  4. [1] | CODATA, The Committee on Data for Science and Technology | (2014)
  5. [2] | CODATA, The Committee on Data for Science and Technology | (2014)
  6. [3] | CODATA, The Committee on Data for Science and Technology | (2018)
  7. Tegmark, Max (November 1998). "Is "the Theory of Everything" Merely the Ultimate Ensemble Theory?". Annals of Physics 270 (1): 1–51. doi:10.1006/aphy.1998.5855. Bibcode1998AnPhy.270....1T. 
  8. M. Tegmark 2014, "Our Mathematical Universe", Knopf
  9. Tegmark, Max (February 2008). "The Mathematical Universe". Foundations of Physics 38 (2): 101–150. doi:10.1007/s10701-007-9186-9. Bibcode2008FoPh...38..101T. 
  10. Tegmark (1998), p. 1.
  11. Bostrom, Nick (2003). "Are You Living in a Computer Simulation?". Philosophical Quarterly 53 (211): 243–255. http://www.simulation-argument.com/simulation.html.